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Logarithmic transformation and peak-discharge

power-law analysis

Bo Chen, Chunying Ma, Witold F. Krajewski, Pei Wang and Feipeng Ren
ABSTRACT
The peak-discharge and drainage area power-law relation Q ¼ αAθ has been widely used in regional

flood frequency analysis for more than a century. The coefficients α and θ can be obtained by nonlinear

or log-log linear regression. To illustrate the deficiencies of applying log-transformation in peak-

discharge power-law analyses, we studied 52 peak-discharge events observed in the Iowa River Basin

in the United States from 2002 to 2013. The results show that: (1) the estimated scaling exponents by

the two methods are remarkably different; (2) for more than 80% of the cases, the power-law

relationships obtained by log-log linear regression produce larger prediction errors of peak discharge in

the arithmetic scale than that predicted by nonlinear regression; and (3) logarithmic transformation

often fails to stabilize residuals in the arithmetic domain, it assigns higher weight to data points

representing smaller peak discharges and drainage areas, and it alters the visual appearance of the

scatter in the data. The notable discrepancies in the scaling parameters estimated by the two methods

and the undesirable consequences of logarithmic transformation raise caution. When conducting

peak-discharge scaling analysis, especially for prediction purposes, applying nonlinear regression on

the arithmetic scale to estimate the scaling parameters is a better alternative.
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INTRODUCTION
Power-law relations between peak flow and drainage area

have been widely observed for centuries and have been

applied in analyzing both regional flood frequencies and

individual rainfall-runoff events (e.g., O’Connell ;

Fuller ; Allen ; Gupta & Dawdy ; Ogden &

Dawdy ; Griffis & Stedinger ; Dawdy et al. ;

Eash et al. ; Ayalew et al. ; Furey et al. ). Studies

that pertain to understanding the physical basis of this

relation have advanced our understanding of flood gener-

ation mechanisms (Gupta et al. , ). Such studies
involve estimating and interpreting the scaling slopes and

intercepts through data analyses (e.g., Ogden & Dawdy

; Gupta et al. ), numerical modeling (e.g., Furey &

Gupta ; Mandapaka et al. ; Ayalew et al. ),

and theoretical considerations (Furey et al. ). The scal-

ing slopes and intercepts are often estimated in these

studies by fitting a straight line to the logarithmic transform-

ations of drainage area and river discharge data using

ordinary or generalized least squares techniques. Although

the discharge and drainage area power-law relation has

been widely applied to estimate flood flows for flood

hazard mapping and has attracted growing attention from

the research community, the appropriateness of using

linear regression of logarithms to estimate power function

parameters tends to be overlooked.
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Form of the peak-discharge scaling relation

Peak-discharge scaling studies hypothesize a general power

function structure as:

E(Q) ¼ αAθXb1
1 Xb2

2 . . .Xbm
m (1)

in which Q [m3/s] is the predicted value of peak-discharge

as the independent variable, A [km2] is the upstream drai-

nage area of a specific location, α, θ, b1, b2, . . . , bm are

regression coefficients, and m is the number of predictor

variables. Xi are the predictor variables including but not

limited to watershed characteristics such as river length,

basin slope, land use, and climatic variables such as the

amount of precipitation. For simplicity, for the remainder

of this paper, we limit our considerations to a single variable

case of relating Q and A.

Drainage area often has been found to be the dominant

predictor variable for basin discharge, therefore Equation (1)

is frequently simplified to a two-parameter power function

E(Q) ¼ αAθ (2)

Parameters α and θ are termed as scaling intercept and

exponent of the peak-discharge power-law relations.
Fitting the power function

The conventional method uses the logarithmic transform-

ation to obtain the parameters α and θ, and uses the

following procedure: (i) transform the original data for Q

and A to logarithms (e.g., of base 10); (ii) fit a straight line

to the logarithms using ordinary or general least squares

techniques; (iii) display the straight line and data points in

a scatter plot with the logarithmic scale and report the coef-

ficient of determination (R2) as the evaluation of the

reliability of the estimated parameters α and θ, and thus

the accuracy of the prediction equation (Equation (2)). Esti-

mates of Equation (2) can be used to explore the variability

of the scaling parameters as results of the interactions

between watershed characteristics and climatic forcing.

Similarly, one can use Equation (2) to predict peak dis-

charge at ungauged locations.
om http://iwaponline.com/hr/article-pdf/51/1/65/758595/nh0510065.pdf
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The linear regression equation is typically written as:

E(log10Q) ¼ log10 α þ θ log10 A (3)

Accordingly, the scaling intercept α is assigned as 10

to the power of the intercept in the regression equation

(Equation (3)) and the scaling exponent θ is equaled to the

slope of Equation (3). In most cases, the coefficient of deter-

mination R2 obtained from the fit of Equation (3) takes a

value less than unity, indicating that there are discrepancies

between paired logarithms of observed and predicted peak-

discharge values. Equation (3), when back-transformed to

Equation (2), implicitly assumes a multiplicative error.

For easier presentation, we call the conventional method

log-log linear regression hereafter. The true values of the

coefficients of Equation (2) are unknown for a number of

reasons. First, only rarely can the existence of the power

law be strictly proven (Newman ; Broido & Clauset

). Second, data of Q and A used to estimate Equation

(2) are corrupted with observational errors and their

sample size is limited. Therefore, the coefficients can only

be estimated.

The conventional method minimizes the sum of squares

of the logarithms, but in many predictive applications of

Equation (2) our main interest is in estimating Q and not

its logarithm. As an alternative, a nonlinear least squares

regression approach estimates the scaling slope and inter-

cept directly, i.e., without a logarithmic transformation,

through Equation (2). This is a numerical fitting approach

that uses the minimum sum of squares of modeling errors

(differences between data and model output) as the optimiz-

ation criterion to obtain the values for parameters. The

nonlinear least squares method therefore assumes additive

errors for the power-law model. Nonlinear fitting used

to take greater computational time, but this is no longer a

limitation with the advances in computers and software.

Initial values can be assigned as the estimates obtained

from the conventional linear regression on logarithms.
Aim of this work

When examining or applying the peak-discharge power-law

relation in the arithmetic scale, the existing reports (e.g.,
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Eash ; Eash et al. ) and research papers present the

peak-discharge-area relationship in the log-log coordinates

(e.g., Ogden & Dawdy ; Mandapaka et al. ;

Gupta et al. ; Ayalew et al. ; Furey et al. ). But

in one of the earliest studies on peak-discharge power-law

relation, O’Connell () plotted peak discharge against

drainage areas in the original units. In O’Connell’s study,

logarithmic transformation was not needed because he

fixed the scaling exponent θ to be 0.5.

Using a variable scaling exponent, however, brings the

problem of fitting the nonlinear power-law function into

view in later studies. Before the invention of computers

and access to nonlinear fitting algorithms, linearizing the

power-law function to Equation (3) was a convenient

solution to this problem. However, statisticians (Miller

; Osbourne ) and researchers in other fields

(Richards ; Smith ; McCuen et al. ; Packard

et al. ; Xiao et al. ; Packard ) have demonstrated

that logarithmic transformation does fundamentally trans-

form the nature of the variables, making the interpretation

of the results somewhat more complex (Asselman ).

They further call for reducing transformation bias (Pattyn

& Van Huele ; Packard ) in curve fitting or using

logarithmic transformation with caution (Miller ).

The appropriateness of applying logarithmic transform-

ations in peak-discharge power-law analyses tends to have

been overlooked. This study explores some implications of

the logarithmic transformation and calls for caution in

future peak-discharge power-law analyses. The authors

pursue this objective by first illustrating the overlooked dis-

crepancies between the peak-discharge power-law models

fitted by the least squares log-log linear and nonlinear

regressions, and then analyzing the causes for the discrepan-

cies. We use the observed event-based peak-discharge data

as examples.

This article is organized as follows. We describe the

study area and data used in this study immediately below.

Then, the following section shows the discrepancies in the

fitted relationships by the log-log linear and the nonlinear

regressions, the underlying reasons for the discrepancies,

and the problems of log-log transformation. The next section

discusses the implications for peak-discharge power-law

data analyses and this is followed by concluding remarks

in the final section.
://iwaponline.com/hr/article-pdf/51/1/65/758595/nh0510065.pdf
DATA AND METHOD

In this study, data for peak-discharge and drainage area of

52 individual rainfall-runoff events in the Iowa River Basin

are taken from the study by Ayalew et al. (). The authors

identified 52 events, over the period from 2002 to 2013 using

both radar rainfall information and instantaneous stream-

flow measurements, to investigate how the duration, depth,

and temporal structure of rainfall control the flood scaling

intercept and exponent. Based on the information available,

they reported that the entire Iowa River Basin received rain-

fall for these events. The Iowa River Basin drains an area of

about 33,000 km2 at its confluence with the Mississippi

River and its longest river flows about 600 km. About 85%

of the basin has a surface slope of less than 5% and an aver-

age river bed slope of about 0.6‰. By assuming flow

velocities varying from 0.5 to 1.5 m/s in the channel, the

in-channel time of concentration of the Iowa River Basin

ranges from about 5 to 15 days. Flooding has been frequent

in Iowa in the past three decades, including the disastrous

events in 1993 and 2008. Location and description of the

streamflow gauges in the Iowa River Basin are provided in

the Supplementary material (Figure S1 and Table S1).

We analyzed the fitted power-law models by examining

the regression residuals and the prediction errors. First, we

used both the log-log linear regression and the nonlinear

least squares regression to obtain the peak-discharge scaling

coefficients and thus their associated power-law models.

Then we used the standardized residuals (SR) defined as:

SRk ¼ RkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
k¼1 (Rk � Rk)

2
=(n� 1)

q (4)

to characterize the fit. In Equation (4), Rk is the residual, i.e.,

the difference between Qobs(k) and Qpred(k), at the kth

streamflow gauge, Rk is the mean of Rk (k¼ 1,2,3,…n),

and SRk represents the associated standardized residual.

Variables Qobs(k) and Qpred(k) are the observed and pre-

dicted peak-discharges at the kth streamflow gauge, and n

is the number of gauges at which peak-discharge is recorded

for an event. All log-transformations were base 10 and non-

linear regressions were implemented using the ‘nls’ function

of the R programming language.
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Leave-one-out cross-validation technique is adopted in

this study to compare the fitted power-law models’ ability to

predict peak-discharge data that were not used in estimating

them. In the practice of conservative flood analysis, these

‘predictions’ are mostly done for ungauged locations with

drainage areas within the original observation range. To

avoid extrapolation, we included the peak-discharge data

associated with the largest and smallest drainage areas in

the training set for each individual event. The leave-one-out

prediction errors (LOOE), in the original unit of streamflow

for each peak-discharge event, are quantified as:

LOOE ¼ 1
n� 2

Xk¼n�2

k¼1

jQobs(k)�Qpred(k)j (5)

The fitted power-law models with smaller LOOE are

assumed to have better predictive skills.
Figure 1 | Different estimates of scaling parameters for the peak-discharge event

identified over the period of 14 June to 4 July 2010 by the two regression

methods. (a) Fitting a straight line (light gray) to the base 10 log-transform-

ations of the observed peak flow and upstream basin area (gray dots) by

ordinary least squares technique. The keys at the lower right corner are the

power function back-transformed from the log-log linear regression, the

coefficient of determination of the log-log linear regression (R2), and the

leave-one-out prediction error (LOOE) from the back-transformed equation.

(b) The power function estimated by the nonlinear regression applied to the

original untransformed peak flow and upstream basin area data (black curve),

which differs from that estimated by preceding analysis (light gray curve), and

the former tends to follow the track of the data points better. For this analysis,

the same set of peak flow and upstream basin area data recorded at the 34

river gauges are available and used. The power functions were fitted using

data from all gauges.
RESULTS

Different estimates of scaling parameters by the two

regression methods

Analysis of a single event

Analysis of an example event over the period of 14 June to

4 July 2010 reveals remarkable discrepancy between the

estimated parameters by the two regression methods. High

coefficient of determination in the log-log linear regression

does not guarantee a good fit of the back-transformed

model to the original untransformed data. Figure 1 illus-

trates the fitted peak-discharge power-law functions by the

log-log linear and nonlinear regressions. For this event, the

maximum stream discharge values were extracted at 34

river gauges. The gray and black colors signify the data,

the fitted lines, and the models associated with the log-log

linear regression and nonlinear regression, respectively.

Figure 1(a) shows the fitted straight line to the logarithmic

transformation of data for the upstream basin area and

peak discharge, with a scaling exponent of 0.56. The

power-law function that is back-transformed from the log-

log linear fitting equation is presented at the lower right
om http://iwaponline.com/hr/article-pdf/51/1/65/758595/nh0510065.pdf

021
corner. The linear model fitted to the log-transformations,

with a coefficient of determination of 0.85 and favorable pat-

tern in its residual plot (as shown later in Figure 2(a)),

strongly supports the power-law relationship between

drainage area and peak-discharge compared with some

reported in the literature. Visual inspection by rotating the

line counterclockwise suggests a steeper slope, which

tends to coincide with the scaling exponent of 0.83 given

by the nonlinear regression (Figure 1(b)). The difference

between the estimates of the scaling exponent is surprising.

The discrepancy between the estimated scaling intercepts is

also obvious.



Figure 2 | Residual plots. (a) SR for log-log regression are within the acceptable limits of

±2 and appear to have homoscedastic variance in the logarithmic scale. (b) SR

for power-law equation that is back-transformed from log-log linear regression

exhibit a megaphone shape, indicating heteroscedastic variance in arithmetic

scale. (c) SR for power-law equation obtained from nonlinear regression seem

to have homoscedastic variance in arithmetic scale. This figure analyzed the

same peak-discharge event as used in Figure 1.
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Figure 1(b) compares the original data and the curves

fitted by the log-log linear (light gray) and nonlinear

(black) regressions. The power-law function we obtained

from the nonlinear fitting is presented at the lower right

corner. Although Figure 1(a) shows satisfactory fitting in

the log-log scale, when back-transformed to the original

arithmetic scale, the equation seems to be an adequate fit

for basins smaller than 10,000 km2 but would seriously
://iwaponline.com/hr/article-pdf/51/1/65/758595/nh0510065.pdf
underestimate the peak flow for large basins. In contrast,

the function resulting from the nonlinear regression

describes the peak discharge well over the full range of

upstream basin areas. This visual comparison is supported

by the fact that the LOOE is smaller for the equation

obtained from the nonlinear regression.

Analyses of multiple events

To show that the event analyzed in the preceding section is

not an exception and that the values of scaling exponent

estimated by the two regression methods are different,

Table 1 compares the estimated parameters and presents

the performances of the two regression methods. Estimates

of scaling parameters in Equation (2) for each peak-

discharge event were obtained using both the log-log linear

and nonlinear regressions. The average values of the

scaling exponent for all of the 52 peak-discharge events

are 0.83(±0.17) from the log-log linear regression and

0.86(±0.14) from the nonlinear regression. Paired t-test

accepted the null hypothesis that the mean difference

between the paired scaling exponents estimated by the log-

log linear and the nonlinear regressions from the 52 events

is zero with a p value of 0.52. However, for about 60% of

the 52 events, their absolute values of difference in the

estimated scaling exponents by the two regression methods

are greater than one standard deviation (0.14). Fourteen

events have absolute differences greater than two standard

deviations.

Table 1 also compares the prediction errors of the power

functions fitted by the log-log linear and nonlinear

regressions. The prediction errors were evaluated in the

arithmetic scale using the untransformed data. For 42 out

of the 52 events, the fit by the nonlinear regression has

smaller LOOE than that by the log-log linear regression,

indicating a better fit of the former from the perspective

of prediction skill. This quantitative assessment is consistent

with our graphical comparisons between the two regressions.

As shown in Figure 1(b), the curve fitted by nonlinear

regression traces the untransformed data better for the

example event. Similarly, a visual inspection for all the 52

events suggests that, for about 80% of the events, the function

resulting from the nonlinear regression better describes the

peak discharge over the full range in upstream basin area.



Table 1 | Comparison of the estimated scaling coefficients α and θ and leave-one-out prediction errors (LOOE) for 52 events observed in the Iowa River Basin of the United States, obtained from the log-log linear regression (log)

and nonlinear regression (nls)

Event #

α θ LOOE (m3/s) α θ LOOE (m3/s)

log nls log nls log nls Event # log nls log nls log nls

20020409 0.0212 0.0027 0.85 1.10 10.1 5.9 20071018 1.4963 0.0909 0.55 0.88 57.3 28.0

20020428 0.0546 0.0275 0.81 0.89 10.7 8.8 20080425 0.6123 0.3878 0.76 0.83 150.0 150.6

20020604 0.0635 0.0005 0.81 1.39 47.6 29.0 20080603 1.9778 1.0269 0.75 0.83 252.7 226.4

20020711 0.0447 0.0020 0.79 1.16 17.2 9.9 20090427 0.2029 0.2853 0.82 0.78 59.0 60.0 Center of the 52 events:

20030509 0.3169 0.1749 0.75 0.82 28.4 26.7 20090515 0.3619 0.0240 0.70 1.02 43.8 24.0 mean median

20030606 0.0122 0.0441 1.02 0.88 15.9 13.6 20090527 0.0455 0.1532 0.95 0.82 34.0 31.6 α log 0.4031 0.1050

20030626 0.0171 0.0589 0.97 0.83 14.5 14.1 20090620 0.4789 0.01o87 0.70 1.05 60.5 59.0 nls 0.2334 0.1488

20030711 0.0497 0.1876 0.91 0.76 26.4 23.9 20091023 0.8486 0.0671 0.61 0.90 47.9 30.7 θ log 0.83 0.82

20040305 0.5134 0.0405 0.65 0.94 32.4 32.5 20091030 2.5929 0.2160 0.54 0.83 75.7 43.8 nls 0.86 0.83

20040326 0.0899 0.0086 0.78 1.06 26.5 17.4 20100309 0.5563 1.1907 0.79 0.70 110.8 107.2 LOOE log 57.3 42.9

20040530 0.2468 0.5909 0.88 0.79 203.3 197.9 20100513 0.9480 0.1491 0.63 0.85 75.1 58.7 nls 49.0 32.3

20050412 0.0514 0.1699 0.87 0.73 14.3 10.3 20100623 2.4067 0.2502 0.56 0.83 92.1 59.1

20050422 0.0073 0.2372 1.12 0.73 44.5 32.1 20100731 0.0390 0.1484 0.99 0.85 37.6 42.3 Spread of the 52 events:

20050513 0.1560 0.3369 0.82 0.72 36.5 27.0 20100811 0.4960 0.0581 0.68 0.94 76.5 52.3 standard
deviation

inter quantile
range

20050629 0.0104 0.1263 1.13 0.86 71.8 62.5 20100924 0.1143 1.0967 0.84 0.62 74.1 81.7

20050924 0.0017 0.1887 1.19 0.70 40.3 38.7 20110426 0.0954 0.1382 0.89 0.84 29.5 26.8

20060309 0.0894 0.0743 0.73 0.76 11.1 9.8 20110529 0.4401 0.1196 0.71 0.85 29.5 19.6 α log 0.6313 0.4468

20060406 0.0625 0.3798 0.92 0.72 56.0 54.9 20110615 0.0956 0.0119 0.86 1.08 32.5 33.7 nls 0.2782 0.2182

20060501 0.0149 0.0784 1.06 0.86 34.6 25.4 20110621 0.1190 0.1099 0.83 0.85 19.7 19.6 θ log 0.17 0.20

20060918 0.0006 0.0681 1.29 0.77 20.3 14.2 20110728 0.0569 0.1538 0.84 0.77 42.0 44.6 nls 0.14 0.13

20070311 0.2690 0.8126 0.81 0.68 72.6 46.0 20120229 0.0225 0.4799 1.06 0.74 107.8 110.6 LOOE log 49.6 44.0

20070401 0.0939 0.1250 0.89 0.87 37.3 37.4 20120504 0.0686 0.0051 0.85 1.14 27.8 27.8 nls 46.9 36.2

20070426 0.4359 0.2273 0.72 0.81 57.6 42.9 20130410 0.2112 0.0212 0.74 1.01 31.0 21.6

20070524 0.0098 0.1066 1.09 0.82 28.4 13.3 20130505 0.6650 0.4348 0.69 0.75 45.3 42.8

20070820 0.4305 0.2367 0.73 0.81 59.7 57.5 20130527 2.2308 0.6200 0.65 0.80 193.0 163.3

20071008 0.0094 0.2054 1.11 0.76 49.4 28.9 20130624 0.7074 0.3700 0.72 0.81 108.6 103.7
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Potential problems of log-transformation

Log-transformation may not stabilize variance in
arithmetic scale

Figure 2(a) plots the SR from the log-log linear regression

in the logarithmic scale (the same example event used in

Figure 1). The SR display no compelling pattern with respect

to the logarithm of fitted peak flow. The Shapiro–Wilk test of

the null hypotheses that the residuals are normally distributed

had p¼ 0.20. The Spearman rank correlation analysis

between absolute values of SR and logarithm of fitted peak

flow showed that the null hypothesis of zero correlation coef-

ficient had p¼ 0.76. Visual inspection of the residual plot and

the quantitative tests appears to suggest that the linear

regression is statistically satisfactory in the logarithmic scale.

However, the residuals from a power-law equation,

which is back-transformed from the log-log linear equation,

tend to be heteroscedastic in the arithmetic scale. Figure 2(b)

plots the SR from the back-transformed power-law function

in the arithmetic scale. The SR exhibit a ‘megaphone’ shape

(the upper side only) and systematic underestimation of the

peak flow of large basins. The Spearman rank correlation

analysis between absolute values of SR and fitted peak

flow rejects the constant variance with a p value of 10�5.

For this exemplary event, the logarithmic transformation

tends to stabilize the variance of the residuals of the log-log

linear regression, but it does not fix the problem of heterosce-

dastic variance of residuals from the back-transformed power

function. For comparison, we show the residual plots of the

power-law equation fitted by nonlinear regression. The SR

appear to be randomly distributed with respect to the fitted

peak flows (Figure 2(c)) in the arithmetic scale. Spearman

rank correlation analysis showed that the null hypothesis

of zero correlation coefficient had p¼ 0.12. However, our

analyses show that for most of the 52 events, neither the non-

linear regression nor the log-log linear regression produced

constant variance of residuals in the arithmetic scale.
Figure 3 | Plotting data in the log-log scale and arithmetic scale. (a) Values for base

10 log-transformations of peak flow and upstream basin area. The straight line

was fitted to the log-transformations by ordinary least squares linear

regression. (b) Power-law equation back-transformed from log-log linear

regression equation shown against observations in arithmetic scale. Dark gray

dots represent observations for peak flows over the period of 9 March to 19

March 2010 at 34 river gauges in the Iowa River Basin.
Log-transformation may make ill-suited data look
extraordinary

Figure 3(a) plots peak flow and upstream basin area in

log-log scale for the event recorded over the period of 9
://iwaponline.com/hr/article-pdf/51/1/65/758595/nh0510065.pdf
March to 19 March 2010. Although the scatter at the

lower left corner of the plot can be a concern, the overall

pattern in the bivariate plot is fairly good and suggests that

fitting a straight line to the observations would be appropri-

ate. The equation obtained by ordinary least squares linear

regression (R2¼ 0.92, n¼ 34) appears to be good.

Figure 3(b) plots the original observations for the same

event with arithmetic coordinates and the power function

back-transformed from the log-log linear regression. Strik-

ingly, this data set seems to be ill-suited for peak-discharge

power-law analysis. On the one hand, peak flows for 4 of

the 34 river gauges in the sample form a nearly horizontal

band in the middle of the scatterplot. Points for the remain-

ing 31 gauges tend to have noticeable scatter. On the other

hand, the back-transformed power-law equation is a poor fit

to the pattern over the full range of upstream basin areas.

This poor fitting is reflected by the fact that the LOOE



72 B. Chen et al. | Logarithmic transformation and peak-discharge power-law analysis Hydrology Research | 51.1 | 2020

Downloaded fr
by guest
on 02 August 2
(110.8 m3/s) for this event is relatively large among all the

events listed in Table 1. The power-law equation estimated

using scaling parameters by the nonlinear regression gives

a little better fit (LOOE¼ 107.2 m3/s, not shown). Neverthe-

less, we consider this event inappropriate for peak-discharge

power-law analysis. The problem of this event would not be

noticed if we solely plotted the data in the log-log scale

rather than in the arithmetic coordinates.

Additionally, the four points at the upper right corner of

Figure 3(a) appear to suggest a line segment with a mild

slope, while the remaining observations seem to follow a

linear model with a much steeper slope. This break in the

scaling exponents (i.e., slopes of line segments) has been

called ‘multiscaling of flood peaks’ and has been interpreted

as an indication of changing dominant physical processes

(e.g., Gupta et al. ). Apparently, the ‘multiscaling’

observed in the log-log space herein should be interpreted

with great caution given the ill-suited data.

Causes of the discrepancy in the estimated scaling

parameters

Log-transformation alters the pattern of data points

Comparisons of the data patterns plotted in the log-log and

arithmetic scales in Figures 1 and 3 show that logarithmic

transformation is monotonic, i.e., the log-transformation

does not alter the order of the original data. However, the

relative distances between adjacent points are changed.

Taking Figure 1(b) as an example, the data points plotted

in the arithmetic scale are clustered into three groups: one

point for observation with upstream basin area greater

than 30,000 km2, 29 with areas less than 10,000 km2, and

the remaining four with areas in-between. Along the hori-

zontal axis, the group with 29 points takes up about 25%

of the plotting space. In contrast, after the logarithmic trans-

formation (Figure 1(a)), along the x-axis the distribution of

the 29 points with areas less than 10,000 km2 expands

and occupies about 70% of the plotting space. It is evident

from comparing Figure 1(a) and 1(b) that logarithmic trans-

formation compresses the larger numbers much more

than the smaller numbers. These imply that the logarithmic

transformation fundamentally changed the pattern of the

untransformed data.
om http://iwaponline.com/hr/article-pdf/51/1/65/758595/nh0510065.pdf
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Log-log linear regression models the geometric mean
response

Linear regression models the mean responses at given

magnitude of predictors, and in this sense Equation (3)

can be rewritten as:

E(log10QjA) ¼ log10 α þ θ log10 A (6)

where E() denotes the expected value. By definition,

E(log10QjA) ¼ (log10Q1jAþ log10Q2jAþ � � � þ log10QnjA)
n

¼ log(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q1jA ×Q2jA × � � � ×QnjAn

p
)

(7)

Equation (7) indicates that the log-log linear regression

equation, and thus the back-transformed power function,

models the geometric mean of peak flow at each given

value of upstream basin area. Since geometric mean is

always smaller than arithmetic mean, the back-transformed

power function likely underestimates peak flows (see

Figure 1 for an example).

Leverage low-value data points in log-log linear regression

Data points on the upper right corner tend to be of low

leverage in the log-log linear regression of peak flow against

upstream drainage area. Figure 4(a) compares the log-log

linear regressions with (solid line in light gray) or without

(dashed line in light gray) the five basins with an area greater

than 10,000 km2 (lighter gray dots). Both visual inspection

and the fitted equations in the lower right corner of

Figure 4(a) show a small discrepancy between the fits,

indicating these log-log linear regressions are dominated

by the 29 data points (darker gray dots) at the lower left

corner. The back-transformed power-law equations (curves

in light gray) are also plotted in the arithmetic scale and

the discrepancy due to removing the five data points is

relatively small (Figure 4(b)). Figure 4 was based on the

same peak-discharge event as used in Figure 1.

Assigning high leverage to data points at the lower-left

corner in the log-log linear regression may at least partially

explain that the back-transformed model reflects the features

of the data points representing small values, but not the



Figure 4 | Leverage in log-log linear regression. (a) Two straight lines fitted by log-log

linear regression with (light gray, solid line) and without (light gray, dashed

line) the five basins with drainage area greater than 10,000 km2. (b) The curves

fitted by nonlinear regression with (black, solid line) and without (black,

dashed line) the five basins with drainage area greater than 10,000 km2.

The light gray lines are back-transformed fits from the log-log linear regression

shown in (a). The lighter gray dots are data for the nine basins with drainage

area greater than 10,000 km2 and the darker gray dots are for the remaining

29 basins. The keys in the bottom right corner are the fitted power-law

equations. This figure analyzed the same peak-discharge event as used in

Figure 1.
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overall relationship between the peak discharge and drainage

area over the full range. In contrast, the equations estimated

by nonlinear regression with (solid line in black) and without

(dashed line in black) the five data points are remarkably

different, implying that these five data points have apparent

influences on the fits. Again, for this peak flow event, the

nonlinear regressions fit the data better in the units of

measurements than those back-transformed from log-log

linear regression when all the data points are used.
DISCUSSION

Peak-discharge power-law relation has been widely used in

regional flood frequency analysis and explored in the
://iwaponline.com/hr/article-pdf/51/1/65/758595/nh0510065.pdf
event-based analysis for physical interpretation. In both

applications, the real interest lies in the nonlinear relation-

ship between the original variables of peak-discharge and

drainage area, that is, in specifying a representative curve

in the arithmetic scale rather than in the double-logarithmic

scale. However, the double-logarithmic scale, i.e., logarith-

mic transformation, has been frequently adopted. Using 52

peak-discharge events observed in the Iowa River Basin,

the United States over the period from 2002 to 2013, this

article illustrates the deficiencies of applying log-transform-

ation in peak-discharge power-law analyses.

On the use of log-transformation for peak-discharge

power-law analysis

Logarithmic transformation was introduced as a notional

method to estimate scaling parameters of the peak-discharge

power-law relationship for: (1) better distribution of data

spanning across few orders (e.g., four in this study) of

magnitude for graphical presentation; (2) simplicity in calcu-

lation when computers were not available; and (3) coping

with the multiplicative residuals or heteroscedastic variance

of residuals.

Presenting and analyzing peak-discharge power-law

relations using log-transformations, however, may lead to

side effects. Figures 1, 3 and 4 and Figures S2 and S3 (similar

analyses for another peak-discharge event in the Sup-

plementary material) in this work show that logarithmic

transformation compresses the higher numbers much more

than the lower numbers. This observation supports the

criticism of statisticians (e.g., Miller ; Osbourne )

and researchers in other fields (e.g., Richards ;

Smith ; McCuen et al. ; Packard et al. ; Packard

) that logarithmic transformation fundamentally

changes the nature of the untransformed data. In Figure 1(b)

and Figure S2(b), the theoretical analysis (see section ‘Log-

log linear regression models the geometric mean response’)

demonstrates that as one of its side effects, the power

function back-transformed from log-log linear regression

may underestimate peak flows for larger basins. Similar

underestimation due to log-transformation was reported by

Asselman (), who studied the fitting of sedimentation-

discharge power-law relation. In addition, Figure 3 illustrates

that the log-transformation makes poor fitting look better.
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Furthermore, Figure 4 and Figure S3 shows that log-transform-

ation may make the fitting less sensitive to the data points

representing larger basins. Our analyses of peak-discharge

data and studies on similar power-law relation in other fields

(e.g., Pattyn & Van Huele ; Pandey & Nguyen ;

Asselman ; Packard & Boardman ; Packard )

all demonstrate that although the linear fitting in the logarith-

mic scale appears pleasing graphically, this does not guarantee

that the power function estimated by back-transformation will

describe the data in the arithmetic scale.

On the other hand, Figure 2(a) and Figure S4(a) indicate

that although log-transformation tends to succeed in stabiliz-

ing the variance of the residuals in the logarithmic space, it

fails to alleviate the problem of heteroscedastic variance of

residuals in the arithmetic scales of practical interest

(Figure 2(b) and Figure S4(b)). This heteroscedastic variance

problem remains for the nonlinear regression method.

Implications for analyzing peak-discharge power-law

relation

Apparently, the aforementioned problems of log-transform-

ation could lead to misinterpretations of the underlying

relationships in the original data. Accordingly, the implication

from this work is to at least use logarithmic transformations

with greater care in peak-discharge power-law analyses. Non-

linear regression seems to fit better the data in the arithmetic

scales, which is of practical interest in power-law applications.

It also helps to disrepute the data that are not appropriate for

power-law analysis of peak discharge. However, as pointed

out by one of our reviewers, nonlinear least squares

regressions might weight data points representing large

valuesmore than those representing smaller values. Neverthe-

less, we recommend that the peak-discharge power-law

relationships should be displayed, evaluated, and applied in

the arithmetic scale instead of log-log scale. This could

increase the fidelity of inferences drawn from future peak-dis-

charge power-law analyses.
CONCLUSION

In this study, we investigated the overlooked problemof adopt-

ing logarithmic transformation in peak-discharge power-law
om http://iwaponline.com/hr/article-pdf/51/1/65/758595/nh0510065.pdf
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analysis. Our findings, through analyzing 52 peak-discharge

events observed in the Iowa River Basin, the United States

over the period from 2002 to 2013, are as follows:

(1) The discrepancy between the parameters estimated by

the log-log linear and nonlinear regression methods is

remarkable.

(2) High coefficient of determination (R2) of log-log linear

regression does not guarantee high accuracy of the

back-transformed peak-discharge power-law model in

the arithmetic scale.

(3) Log-log transformation of discharge and area data may

mislead the observation of power-law relation and multi-

scaling of flood peaks.

(4) Log-log linear regression may assign high leverage to

data points at the lower-left corner, alter the visual

appearance of the scatter in the data, and fail to stabilize

variance and predict the median response in the arith-

metic scale. These potential problems at least partially

explain that the back-transformed model reflects the fea-

tures of the data points representing lower values but not

the overall relationship between peak discharge and

drainage area over the full range.

(5) The peak-discharge power functions estimated by non-

linear fitting tend to give smaller prediction errors

(LOOE) and better follow the track of data points in

the arithmetic scales in most cases.

Recognizing its importance to the field of flood

hydrology, this article addresses the use of logarithmic trans-

formations in future peak-discharge power-law analyses.

When applying the regression equations of peak-discharge

vs drainage area to predict flood flows for ungauged

locations, or to investigate the connections between natural

processes and the dynamics of peak-discharge, the fitted

peak-discharge power-law relationships should be displayed,

evaluated, and applied in the arithmetic scale of practical

interest. Accordingly, we recommend using logarithmic

transformations in peak-discharge power-law analyses with

greater care. The nonlinear regression, which often fits the

data better in the arithmetic scale, could be an alternate.

This cautionary note may help increase the prediction accu-

racy of peak-discharges at ungauged locations and improve

our understanding of flood generating mechanisms retrieved

from peak-discharge scaling analyses. We investigated the
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issues of using log-log linear regression to fit power-law func-

tions in the context of Q-A relationships, while the findings

herein may also be valid for other applications, including but

not limited to, fitting discharge-stage, discharge-sediment,

and hydraulic geometry relationships.

We also recommend more research into the issues

that affect the statistical consideration of peak-discharge

modeling via regression. These include the probability

distribution of peak-discharge data, and the statistical (distri-

butional) properties of the residuals. One special topic

that is often ignored is the spatial dependence of the peak-

discharge. With the covariance known, it would be interest-

ing to explore the estimation framework of the generalized

least squares.
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